

Oxford PECVD 使用者操作手册

廠商: Oxford 儀器: PECVD 地點: 卓越研究大樓 2F 無塵室 爐管區 聯絡: 02-3366-5064; <u>nems@mail.nems.ntu.edu.tw</u> 撰寫/校稿: 陳昱達/吳政儒 版本: 1.0 (April 2023)

目錄

1	使	用限制	3
2	使	用前檢查清單	3
3	儀	器操作程序	5
	3.1	介面介紹	5
	3.2	破真空	6
	3.3	放置樣本	7
	3.4	抽真空	9
	3.5	設定自動製程	
	3.6	調整載盤溫度	
	3.7	設定清腔製程	
4	使	用後檢查清單	
5	常」	見狀況排除 Erro r	! Bookmark not defined.

1 使用限制

- 只有已通過訓練及檢定之使用者允許操作本儀器
- 嚴禁 PI (polyimide) 膠帶、光阻(photoresist)材料,金屬可
- 樣本最大尺寸為 8 时晶圓,可用破片,晶圓,晶片,晶粒
- 目前本儀器可鍍非晶砂(a-silicon)、氧化物(oxides)、氮化物(nitrides)

2 使用前檢查清單

□製程冷卻水工作壓力>2 kg/cm²
刷開卡機後・如 Figure 1 所示・
□檢查狀態信號燈確定全為綠燈
□檢查 loadlock 指示燈及壓力<7 x 10⁻² Torr
□檢查反應腔體指示燈及壓力約在 1 mTorr
□檢查載盤位置是否在 loadlock

注意:請立即通知中心人員如果任一檢查項目未符合初始狀態!!

Figure 1 儀器控制介面

3 儀器操作程序

3.1 介面介紹

使用者主要會進入 System → Pumping 功能去監測 PECVD 系統,樣品載盤 位置及幫浦抽氣情形,其他項目如 Figure 2 所示則禁止進入,如果誤觸進入 Service 及其他項目請立即通知中心人員

Figure 2 System Menu

Figure 3 Process Menu

Process 下,使用者主要會使用 Recipes 及 Chamber 1 兩功能,如上圖 Figure 3 所示,各功能解釋如下,

Recipes: 编辑、载入及執行製程

Chamber 1: 反應腔體狀態, 製程控制, 調整載盤溫度

3.2 破真空

STOP → Wafer has finished processing → √OK → VENT · 系統會先通氮 氣,清洗整個 loadlock 腔體,之後 mechanical pump 閥門關閉, vent 閥 門持續通氮氣,進行破真空,總時間大約需 180s,倒數至 90s 及壓力達穩 定時,則可開腔門(須為第一道製程或單純破真空,如為第二道製程後,則 建議完成所需破真空秒數)

Figure 4 Loadlock 狀態示意圖

3.3 放置樣本

打開腔門開關 · 注意載盤高溫以防燙傷 · 查看載盤位置 · 利用夾子確定載盤 確實對齊對位 pin · 最大尺寸可放置 8 吋晶圓 · 嚴禁放置 PI 膠帶及光阻

注意: 放置樣品後,請檢查 ARM HOME 狀態信號燈為綠燈

ARM HOME	0
ARM EXTENDED	0
ARMFAULT	0
WAFER LIFT	DOWN

Figure 5 Loadlock 內部對位 pin 位置

3.4 抽真空

Evacuating Loadlock					
Lid Pirani Vent Time Left	CLOSED 3.68e-02 Torr 0 secs				

Figure 6 Loadlock 狀態示意圖

沒有命名晶圓名字在系統上不會顯示綠色載盤位置·無法啟動自動製程·抽 真空直到氣壓顯示小於 7x 10⁻² Torr·並且指示燈亮起

Figure 7 晶圓命名視窗

3.5 設定自動製程

Process → Recipes → Automatic → Load → 選取製程 → 設定製程時間 →

√OK → Run

如果選取另一個製程,系統要求是否 Overwrite current recipe 請按 √Yes

Load Recipe	
OXFORD	Ves No
Overwrite current recipe :	
a-Si-300C ?	

Figure 8 Recipe 覆寫視窗

製程選項視窗會出現,請選擇所需要的製程,並按√OK,即可看到該製程的 完整步驟,在選擇與製程名稱相同之製程步驟,可進入 Process Step Editor 編輯,修改所須製程時間(STEP TIME)。製程時間則由所需膜厚(nm)和所 鍍材料的沉積速率(Å/s)所決定,Table 1 則提供了本儀器常見鍍膜材料的沉 積速率。

注意:使用者只可更改製程的時間 (STEP TIME),其餘參數請勿更改

Load Recipe					
Recipe Name					
Si	iO2-300C		OXFORD		
m Pu Si Si Si Si Si Si Si Ti	uuti ump Purge iNx-100C-HF Only iNx-200C-HF Only iNx-280C-HF Only iNx-300C-Dual Frequency iNx-300C-HF Only iO2-100C iO2-200C iO2-280C iO2-300C iO2-300C iO2-300C-YANG iO2-SiNX-SiO2-300C-N&M imLab N-Rich HF SiNx 250C		Cancel Delete		
Ti Ti	imLab SiNx-250C-HF Only imLab SiO2+SiNx 300	-			

Figure 9 鍍膜製程列表

- System - Proces	ss 🖳 🖳 Utilities)	Manager	RECIPE
Automatic O Manual O Clean O	Recipe Name Data Log Interval Created Recipe Length	Si02-300C 00 00 05 21-Dec-22 4:43:04 pm 0000:21:30		-1
	1. Pump 2. Preheat 3. Si024 4. Pump	Step Commands Edit Step Repeat Step Loop Step Insert Step Delete Step		
		Cancel		

Figure 10 進入編輯製程步驟

📲 System 🕒 Process 🔚 Utilities			
Process Step	Editor	Step	
START STOP PAUSE JUMP	STEP TIME 00_15_00_	TABLE HEATER Deg.C 300	

Figure 11 修改製程時間

參考資料:

	沉積速率 (Å/s)
Amorphous Silicon (a-Si) @300 °C	30
Silicon Oxide 300 °C	14.6
Silicon Nitride 300 °C	4.6

Table 1 常見材料的沉積速率

3.6 調整載盤溫度

升高載盤溫度可依照 Figure 10~12 的步驟執行,如果需執行較低溫製程(小於 300C),請事先通知中心人員在預約時間前降溫,因為降溫需時較久,改 變載盤溫度程序如下

SET TABLE HEATER DegC \rightarrow START \rightarrow Table temperature not in

tolerance \rightarrow Stop \rightarrow YELLOW ALERT \rightarrow Accept

Figure 12 輸入欲調整溫度,並開始調整溫度

Figure 13 開始調整,視窗顯示溫度 not in tolerance

Figure 14 製程結束視窗

3.7 設定清腔製程

設定清腔製程前,需手動移動載盤至反應腔體中,點選 loadlock 中的緣 色載盤,會出現向右黃色箭頭,和藍色路徑,點選路徑尾端反應腔體後, 則載盤會開始移動至反應腔體

Figure 15 點選綠色載盤顯示出可移動路徑至反應腔體

載盤移動完成後則會如 Figure16 所示,綠色載盤轉移至反應腔體

Figure 16 載盤移動至反應腔體

設定清腔製程時,需進入 Process → Recipes → Clean → Load → Clean-300C → √OK → Run 中心規定清腔製程需要在 300C 下進行,因此如果之前執行非 300 C 製 程,需先調整載盤溫度至 300C 在進行清腔

Load Recipe	
Recipe Name	
Clean-300C	OXFORD
.Clean-300C 01 Clean-200C Clean-300C	Cancel

Figure 17 清腔製程列表

清腔程序完成後,請依相同步驟,手動移動載盤至 loadlock

注意: 清腔時請勿刷關,違者罰 10 倍之使用費!!

Figure 18 點選綠色載盤顯示出可移動路徑至 loadlock

4 使用後檢查清單

刷關前,請復歸為初始狀態

□檢查狀態信號燈確定全為綠燈

□檢查 loadlock 指示燈及壓力<7 x 10⁻² Torr

□檢查反應腔體指示燈及壓力約在1 mTorr

□檢查載盤位置是否手動移回 loadlock

檢查確定一切沒問題後,則可刷關卡機!!